Linear maps and tensor rank
نویسندگان
چکیده
منابع مشابه
Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems
We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of the parameter space would require a computational effort growing exponentially in the number of parameters. We show that this curse of dimensionality can be avoided for sufficiently smooth parameter dependencies. For this pur...
متن کاملLinear Maps Preserving Numerical Radius of Tensor Products of Matrices
Let m,n ≥ 2 be positive integers. Denote by Mm the set of m×m complex matrices and by w(X) the numerical radius of a square matrix X. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map φ : Mmn →Mmn satisfies w(φ(A⊗B)) = w(A⊗B) for all A ∈Mm and B ∈Mn if and only if there is a unitary matrix U ∈Mmn and a complex unit ξ such that φ(A⊗B) = ξU(φ1(...
متن کاملEfficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملLow-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملExploring Tensor Rank
We consider the problem of tensor rank. We define tensor rank, discuss the motivations behind exploring the topic, and give some examples of the difficulties we face when trying to compute tensor rank. Some simpler lower and upper bounds for tensor rank are proven, and two techniques for giving lower bounds are explored. Finally we give one explicit example of a construction of an n×n×n tensors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1976
ISSN: 0021-8693
DOI: 10.1016/0021-8693(76)90244-1